Computational Evaluation of the Combination of Semi-Supervised and Active Learning for Histopathology Image **Segmentation with Missing Annotations**

Laura Gálvez Jiménez, Lucile Dierckx, Maxime Amodei, Hamed Razavi Khosroshahi, Natarajan Chidambaran, Anh-Thu Phan Ho, Alberto Franzin laura.galvez.jimenez@ulb.be, maxime.amodei@uliege.be

Context / Motivation

Fully annotated image

Real-world annotated image: missing annotations

How to deal with missing annotations in digital pathology?

Related works / Gap

Medical image segmentation with missing annotations

We test if combining different SSL and AL methodologies improves performance over using SSL, AL or other strategies separately for \bullet segmentation in histopathology images when training with missing annotations.

Results

• Only Positive strategy performs as good as consistencybased SSL methods.

Conclusions

- Fixmatch and Freematch obtain similar results while Flexmatch does not perform well on this task.
- AL combined with Only Positive strategy improves model's performance.
- AL random strategy obtains similar results as more elaborate selection methodologies.
- Future work: Test if other SSL/AL strategies and combinations are more suitable for histopathology image segmentation.

References

[1] Lai, Z. et al. (2021). A semi-supervised learning for segmentation of gigapixel histopathology images from brain tissues. (EMBC) (pp. 1920-1923). IEEE.

[2] Yang, L. et al. (2017). Suggestive annotation: A deep active learning framework for biomedical image segmentation. In MICCAI 2017: 20th International Conference, Proceedings, Part III 20 (pp. 399-407).

[3] Lai, Z. et al. (2021). Joint semi-supervised and active learning for segmentation of gigapixel pathology images with cost-effective labeling. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 591-600).

[4] Foucart, A. et al. (2019). SNOW: Semi-supervised, NOisy and/or Weak data for deep learning in digital pathology. In (ISBI 2019) (pp. 1869-1872). IEEE.

